THE WORKING GROUP II
CONTRIBUTION TO THE IPCC'S
FIFTH ASSESSMENT REPORT

IPCC AR5 is based on risk.
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e >2°Cincrease in global temperature has a
heavy impacts on global environment.

— Scientific advise by climate change group
* Action plan to prevent the 2°C increase.
— Numerical goal of Kyoto Protocol
— CDM, REDD+ --- Scientific advises
» There are large quantitative uncertainties in

the relationship between GHG emission and
global warming.

3 Working Groups of IPCC AR4
WG1: Physical Science Basis

— Global warming actually occurred, perhaps by GHG.

WG2: Impacts, Adaptation and Vulnerability

— Warn what kind of hazards may happen by CC.

WG3: Mitigation of Climate Change

— Compile data and ecnomic/technical advise to
reduce GHG emission

These “results” in SPM that recommends 2°C

threshold, <480ppm CO, target, 80% reduction

of GHG. IPBES?

3

GHG emissions accelerate despite reduction efforts. Most emission growth is CO,

from fossil fuel combustion and industrial processes.
Total Annual Anthropogenic GHG Emissions by Groups of Gases 1970-2010
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Figure SPM.1 | Total annual anthropogenic GHG emissions (GtCO2eq / yr) by groups of gases 1970 — 2010: CO2 from fossil fuel
combustion and industrial processes; CO2 from Forestry and Other Land Use (FOLU); methane (CH4); nitrous oxide (N20); fluorinated
gases covered under the Kyoto Protocol (F-gases). At the right side of the figure GHG emissions in 2010 are shown again broken down
into these components with the associated uncertainties (90 % confidence interval) indicated by the error bars. Total anthropogenic
GHG emissions uncertainties are derived from the individual gas estimates as described in Chapter 5 [5.2.3.6].




Past trends in CO, and temperature

CO2 and Temperature over the 20th Century
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Scenarios for GHG emissions from 2000 to 2100 (in the absence
of additional climate policies) and projections of surface temperatures
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Risk assessment for
no-action case
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Projections of surface temperatures
depend on scenario, large uncertainty
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Quelle: IPCC-AR4-wg1_SPM: Scientific Basis, Bild SPM-5, (2007702?3




Projected Patterns of Precipitation Changes
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Figure TS.5 | Observed and projected changes in annual
average surface precipitation. This figure informs
understanding of climate-related risks in the WGII ARS. It
illustrates changes observed to date and projected changes
under continued high emissions and under ambitious mitigation.
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Risk assessment for

WG2 : Extreme Weather Events |  ne-actioncase =

1e weather C’»‘I: k
which there is an observed late 20th century trend. {Tables 3.7, 3.8, 9.4, Sections 3.8,55,07.11.2-11.0} |

Likelihocd that trend LIKelnooa of ruire

Phenomenen® and direction occurred in late 20th L\ke_llhopa oi a human "g"d§ based on
. contribution to observed projections for 21st
of trend century (typically post trend © century using SRES
1960) scenarios
Warmer and fewer cold days . R
and nights over most land Very likely” Likaly® Virtually certain®

areas

Warmer and more frequent
hot days and nights over Very lively” Likely (nights)® \Virtually certain®
most land areas

Warm spells  heat waves, .
Frequency increases over Likely Mare fikely than not” Very likely
most land arzas

Heavy precipitation events.
Frequency {or proportion of

. o . PR
total rainfall from heavy falls) Likely Mare likely than not Very likely
increases over most areas

Area affected by droughts Likely in many regions A

ncreases since 159703 Mare fikely than not Likely
Intense tropical cyclone Likeiy in some regions kel i ' ety
activity increases sinee 1970 Mare fikety than nof Likely

Increased incidence of . )
extreme high sea level Likely More likaly than nor” Likely
fexcludes tsunamis) !

Quelle: IPCC-AR4-wg1_SPM: Scientific Basis, Tabelle SPM-1, {2007-02) 10
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Figure SPM.2 Widespread impactsin a E s ees
changing world. (A) Global patterns of impacts ot
in recent decades attributed to climate change,
based on studies since the AR4. Impacts are
shown at a range of geographic scales.
Symbols indicate categories of attributed
impacts, the relative contribution of climate
change (major or minor) to the observed
impact, and confidence in attribution. See
supplementary Table SPM.AL1 for descriptions
of the impacts. ...[Figures 7-2, 18-3, and MB-2]
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Projection of crop yield without
adaptation
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For the major crops (wheat, rice, and maize) in tropical and temperate
regions, climate change without adaptation is projected tonegatively
impact production for local temperature increases of 2°C or more above
late-20th-century levels, although individual locations may benefit iDCC
(medium confidence) rekgovERmEITAL st on GlIMATE Ghange




Climate change risks for fisheries

Change in maximum catch potential (2051-2060 compared to 2001-2010, SRES A1B)
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Figure SPM.6 Climate change risks for

fisheries. (A) Projected global redistribution

of maximum catch potential of ~1000

Frrdlive ellixl exploited fish and invertebrate species.

B o cffect Projections compare the 10-year averages
2001-2010 and 2051-2060 using SRES
A1B, without analysis of potential impacts
of overfishing or ocean acidification. [6.1,
6.3, 30.5, Figures 6-10 and 6-14; WGI
AR5 Box SPM.1]
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Marine systems

Due to projected climate change by the mid 21st century and beyond,
global marine-species redistribution and marine-biodiversity reduction in
sensitive regions will challenge the sustained provision of fisheries
productivity and other ecosystem services (high confidence). Spatial shifts
of marine species due to projected warming will cause high-latitude
invasions and high local-extinction rates in the tropics and semi-enclosed
seas (medium confidence). Species richness and fisheries catch potential
are projected to increase, on average, at mid and high latitudes (high
confidence) and decrease at tropical latitudes (medium confidence). ...

For medium- to high-emission scenarios (RCP4.5, 6.0, and 8.5), ocean
acidification poses substantial risks to marine ecosystems, especially
polar ecosystems and coral reefs, associated with impacts on the
physiology, behavior, and population dynamics of individual species from
phytoplankton to animals (medium to high confidence). Highly calcified
mollusks, echinoderms, and reef-building corals are more sensitive than
crustaceans (high confidence) and fishes (low confidence), with potentially
detrimental consequences for fisheries and livelihoods.

=6.3-5, 7.4, 25.6, 28.3, 30.6-7, Boxes CC-MB and CC-PP
=5.4, 6.3-5, 22.3, 25.6, 28.3, 30.5, Boxes CC-CR, CC-OA, and TS.7
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Figure SPM.2

Widespread impacts in a changing world. (B) Average rates of

change in distribution (km per decade) for marine taxonomic groups based
on observations over 1900-2010. Positive distribution changes are consistent
with warming (moving into previously cooler waters, generally poleward).

The number of
category. [Figu

responses analyzed is given within parentheses for each
res 7-2, 18-3, and MB-2]

Examples of impacts associated with global average temperature change
(Impacts will vary by extent of adaptation, rate of temperature change and socio-economic pathway)

Global average annual temperature change relative o 1980-1999 (“C)
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Figure SPM.5 | Maximum speeds at which species can move across landscapes (based on observations and models; vertical axis on
left), compared with speeds at which temperatures are projected to move across landscapes (climate velocities for temperature;
vertical axis on right). Human interventions, such as transport or habitat fragmentation, can greatly increase or decrease speeds of
movement. White boxes with black bars indicate ranges and medians of maximum movement speeds for trees, plants, mammals,
plant-feeding insects (median not estimated), and freshwater mollusks. For RCP2.6, 4.5, 6.0, and 8.5 for 20502090, horizontal lines
show climate velocity for the global-land-area average and for large flat regions. Species with maximum speeds below each line are
expected to be unable to track warming in the absence of human intervention. [Figure 4-5]

(A) Our world (B) Opportunity space (C) Possible futures

Multiple stressors
including
climate change

. Biophysical stressors

[T Resilience space
Social stressors

Low resilience = High risk

Figure SPM.9 | Opportunity space and climate-resilient pathways. (A) Our world [Sections A-1 and B-1] is threatened by multiple stressors
that impinge on resilience from many directions, represented here simply as biophysical and social stressors. Stressors include climate
change, climate variability, land-use change, degradation of ecosystems, poverty and inequality, and cultural factors. (B) Opportunity space w...
sanasncamec refers to decision points and pathways that lead to a range of (C) possible futures sec.ess with differing levels of resilience and risk.
(D) Decision points result in actions or failures-to-act throughout the opportunity space, and together they constitute the process of managing
or failing to manage risks related to climate change. (E) Climate-resilient pathways (in green) within the opportunity space lead to a more
resilient world through adaptive learning, increasing scientific knowledge, effective adaptation and mitigation measures, and other choices
that reduce risks. (F) Pathways that lower resilience (in red) can involve insufficient mitigation, maladaptation, failure to learn and use
knowledge, and other actions that lower resilience; and they can be irreversible in terms of possible futures.

Climate-change adaptation as an
iterative risk management process
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Figure SPM.3 | Climate-change adaptation as an iterative risk management process with
multiple feedbacks. People and knowledge shape the process and its outcomes
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Figure T5.6 | (A} Percentage change of mean annual streamilow for a global mean
temperature rise of 2°C above 1980-2010. Color hues show the multi-model mean
dhange across 5 General Circulation Models (GCMs) and 11 Global Hydrological
Flon? flqulEll'H.'_r Models (GHMs), and saturation shows the agreement on the sign of change 2cross all
B " 55 GHM-GCM combinations (percentage of model runs agreeing on the sign of
change). (B and C) Projected change in river flood retum period and exposure, based
2 5 25 L] 75 g5 105 125 25 on one hydrological model driven by 11 GCMs and on glabal population in 2005. (B)
_ . In the 20805 under RCP.5, multi-model median return period (years) for the
Ratum pﬂﬂDd [!'93[5-' 20th-century 100-year flood. {C) Global exposure to the 20th-century 100-year flood
in millions of peaple. Left: Ensemble means of historical (black line) and future
simulations (colored lines) for each scenario. Shading denotes +1 standard deviation.
Right: Maximum and minimum (extent of white), mean (thick colored lines), +1
standard deviation (extent of shading), and projections of each GCM (thin colored
lines) averaged over the 21st century. [Figures 3-4 and 3-6]
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Ecosystem-based adaptation

Climate mitigation ~ Climate change impacts

’.—p Ecosystem protection
and restoration
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Figure EA-1 | Adapted from Munangi et al. (2013). Ecosystem-based adaptation (EBA)
uses the capacity of nature to buffer human systems from the adverse impacts of climate
change. Without EBA, climate change may cause degradation of ecological processes
(central white panel) leading to losses in human well-being. Implementing EBA (outer blue
panel) may reduce or offset these adverse impacts resulting in a virtuous cycle that
reduces climate-related risks to human communities, and may provide mitigation benefits.
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Tragedy of the mitigation policy

= Every nation (i) has 2 options, mitigation (M,) and adaptation (A)).

* Climate change depends on global effort for mitigation (M), not local.

* Benefit from adaptation usually depends on local effort (A)), not global
(ZA,');

* Ifthe net benefit is given by F(M,N~M,)=(N~M)f(zM)+g,(zM))

e Nash solution is N-M=(f~g/)/f/

*  Functional forms f; and g; may vary with nation, but adaptation effort
(N~M,) of a nation does not change with its GDP.

e Mitigation cost must be paid by developed countries at non-cooperative
solution.

¢ Anyway, we should NOT use Nash solution. We need to seek a
cooperative solution.

¢ If so, how do we get it?
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